4.5 Article

Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00370.2006

关键词

N-3-oxododecanoyl homoserine lactone; cystic fibrosis; innate immunity; paraoxonase

资金

  1. NHLBI NIH HHS [P01 HL-30568, HL-61234-08, R01 HL-71776] Funding Source: Medline

向作者/读者索取更多资源

Pseudomonas aeruginosa is an important cause of nosocomial infections and is frequently present in the airways of cystic fibrosis patients. Quorum sensing mediates P. aeruginosa's virulence and biofilm formation through density-dependent interbacterial signaling with autoinducers. N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is the major autoinducer in P. aeruginosa. We have previously shown that human airway epithelia and paraoxonases (PONs) degrade 3OC12-HSL. This study investigated the role of PON1, PON2, and PON3 in airway epithelial cell inactivation of 3OC12-HSL. All three PONs were present in murine tracheal epithelial cells, with PON2 and PON3 expressed at the highest levels. Lysates of tracheal epithelial cells from PON2, but not PON1 or PON3, knockout mice had impaired 3OC12-HSL inactivation compared with wild-type mice. In contrast, PON1-, PON2-, or PON3-targeted deletions did not affect 3OC12-HSL degradation by intact epithelia. Overexpression of PON2 enhanced 3OC12-HSL degradation by human airway epithelial cell lysates but not by intact epithelia. Finally, using a quorum-sensing reporter strain of P. aeruginosa, we found that quorum sensing was enhanced in PON2- deficient airway epithelia. In summary, these results show that loss of PON2 impairs 3OC12-HSL degradation by airway epithelial cells and suggests that diffusion of 3OC12-HSL into the airway cells can be the rate-limiting step for degradation of the molecule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据