4.7 Article

Granulocyte-macrophage colony-stimulating factor-induced vessel growth restores cerebral blood supply after bilateral carotid artery occlusion

期刊

STROKE
卷 38, 期 4, 页码 1320-1328

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.STR.0000259707.43496.71

关键词

angiogenesis; cerebral blood flow; growth factors; stroke; vasculature

向作者/读者索取更多资源

Background and Purpose-Hemodynamic compromise due to occlusive cerebrovascular disease is associated with an increased stroke risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been suggested to stimulate collateral blood vessel growth in various models of hemodynamic compromise. The purpose of this study was to investigate the effects of GM-CSF on cerebral hemodynamics and vessel growth in a rat model of chronically impaired cerebral blood flow (CBF). Methods-Male Sprague-Dawley rats underwent sequential bilateral carotid artery occlusion (BCO) and were treated with GM-CSF or saline for 6 weeks. Sham-occluded animals served as a control group. Baseline CBF was measured by iodo[(14)C] antipyrine autoradiography, and cerebrovascular reserve capacity was assessed by laser-Doppler flowmetry after application of 20 mg/kg body weight acetazolamide. The capillary density and arterioles immunopositive for alpha-smooth muscle actin were counted on brain sections. The cerebral angioarchitecture was visualized with a latex perfusion technique. Results-Baseline CBF as measured by iodo[(14)C] antipyrine autoradiography was not affected by BCO. The cerebrovascular reserve capacity, however, was significantly impaired 1 week after BCO. CBF and cerebrovascular reserve capacity recovered completely in GM-CSF-treated animals but not in solvent-treated animals. Histologic analysis of the hippocampus revealed integrity of the hypoxia-vulnerable neurons in all animals. The capillary density showed a very mild increase in GM-CSF-treated animals. However, the number of intraparenchymal and leptomeningeal arterioles was significantly higher in GM-CSF-treated animals than in both other groups. Conclusions-Long-term GM-CSF treatment in a BCO model in rats leads to restoration of impaired cerebral hemodynamics and accompanies structural changes in the resistance-vessel network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据