4.6 Article

Calpain regulation of AMPA receptor channels in cortical pyramidal neurons

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 580, 期 1, 页码 241-254

出版社

WILEY
DOI: 10.1113/jphysiol.2006.122754

关键词

-

向作者/读者索取更多资源

AMPA receptors (AMPARs) are the principal glutamate receptors mediating fast excitatory synaptic transmission in neurons. Aberrant extracellular glutamate has long been recognized as a hallmark phenomenon during neuronal excitotoxicity. Excessive glutamate triggers massive Ca2+ influx through NMDA receptors (NMDARs), which in turn can activate Ca2+-dependent protease, calpain. In the present study, we found that prolonged NMDA treatment (100 mu M, 10 min) caused a sustained and irreversible suppression of AMPAR-mediated currents in cortical pyramidal neurons, which was largely blocked by selective calpain inhibitors. Biochemical and immunocytochemical studies demonstrated that in cortical cultures, prolonged glutamate or NMDA treatment reduced the level of surface and total GluR1, but not GluR2, subunits in a calpain-dependent manner. Consistent with the in vitro data, in animals exposed to transient ischaemic insults, calpain was strongly activated, and the AMPAR current density and GluR1 expression level were substantially reduced. Moreover, calpain inhibitors blocked the ischaemia-induced depression of AMPAR currents, and the NMDAR-induced, calpain-mediated depression of AMPA responses was occluded in ischaemic animals. Taken together, our studies show that overstimulation of NMDARs reduces AMPAR functions in cortical pyramidal neurons through activation of endogenous calpain, and calpain mediates the ischaemia-induced synaptic depression. The down-regulation of AMPARs by calpain provides a negative feedback to dampen neuronal excitability in excitotoxic conditions like ischaemia and epilepsy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据