4.5 Article

Generalized analysis of molecular variance

期刊

PLOS GENETICS
卷 3, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.0030051

关键词

-

资金

  1. NHLBI NIH HHS [U01 HL064777, R01 HL070137, U01 HL064777-06, HL074730-02, HL070137-01, R01 HL074730] Funding Source: Medline
  2. NIA NIH HHS [U19 AG023122-01, U19 AG023122] Funding Source: Medline
  3. PHS HHS [5 R01 HLMH065571-02] Funding Source: Medline

向作者/读者索取更多资源

Many studies in the fields of genetic epidemiology and applied population genetics are predicated on, or require, an assessment of the genetic background diversity of the individuals chosen for study. A number of strategies have been developed for assessing genetic background diversity. These strategies typically focus on genotype data collected on the individuals in the study, based on a panel of DNA markers. However, many of these strategies are either rooted in cluster analysis techniques, and hence suffer from problems inherent to the assignment of the biological and statistical meaning to resulting clusters, or have formulations that do not permit easy and intuitive extensions. We describe a very general approach to the problem of assessing genetic background diversity that extends the analysis of molecular variance (AMOVA) strategy introduced by Excoffier and colleagues some time ago. As in the original AMOVA strategy, the proposed approach, termed generalized AMOVA (GAMOVA), requires a genetic similarity matrix constructed from the allelic profiles of individuals under study and/or allele frequency summaries of the populations from which the individuals have been sampled. The proposed strategy can be used to either estimate the fraction of genetic variation explained by grouping factors such as country of origin, race, or ethnicity, or to quantify the strength of the relationship of the observed genetic background variation to quantitative measures collected on the subjects, such as blood pressure levels or anthropometric measures. Since the formulation of our test statistic is rooted in multivariate linear models, sets of variables can be related to genetic background in multiple regression-like contexts. GAMOVA can also be used to complement graphical representations of genetic diversity such as tree diagrams (dendrograms) or heatmaps. We examine features, advantages, and power of the proposed procedure and showcase its flexibility by using it to analyze a wide variety of published data sets, including data from the Human Genome Diversity Project, classical anthropometry data collected by Howells, and the International HapMap Project.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据