4.3 Article

Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases

期刊

CLINICAL & EXPERIMENTAL METASTASIS
卷 24, 期 2, 页码 107-119

出版社

SPRINGER
DOI: 10.1007/s10585-007-9059-9

关键词

parathyroid hormone-related protein; ezrin; lung cancer; bone metastasis

类别

资金

  1. NCI NIH HHS [R01 CA 77911, P01 CA100730] Funding Source: Medline
  2. NCRR NIH HHS [K26 RR00168] Funding Source: Medline

向作者/读者索取更多资源

Lung cancer often metastasizes to bone in patients with advanced disease. Identification of the factors involved in the interactions between lung cancer cells and bone will improve the prevention and treatment of bone metastases. We identified changes in metastasis-related gene expression of human HARA lung squamous carcinoma cells co-cultured with neonatal mouse calvariae using a pathway-specific microarray analysis. Nine genes were up-regulated and two genes down-regulated in HARA cells co-cultured with mouse calvariae. Five of the nine up-regulated genes, including caveolin 1, CD44, EphB2, ezrin, and Parathyroid hormone-related protein (PTHrP), and one down-regulated gene, SLPI, were further confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). A mouse model was subsequently used to study the role of PTHrP and ezrin in bone metastasis in vivo. PTHrP (all three isoforms) and ezrin were up-regulated in HARA cells at sites of bone metastasis as detected by RT-PCR and immunohistochemistry. The PTHrP 141 mRNA isoform was increased by the greatest extent (13.9-fold) in bone metastases compared to PTHrP 139 and PTHrP 173 mRNA. We then generated a HARA cell line in which PTHrP expression was inducibly silenced by RNA interference. Silencing of PTHrP expression caused significant reduction of submembranous F-actin and decreased HARA cell invasion. Ezrin up-regulation was confirmed by Western blots on HARA cells co-cultured with adult mouse long bones. Further, Transforming growth factor beta (TGF-beta) was identified as one of the factors in the bone microenvironment that was responsible for the up-regulation of ezrin. The identification of PTHrP and ezrin as important regulators of lung cancer bone metastasis offers new mechanistic insights into the metastasis of lung cancer and provides potential targets for the prevention and treatment of lung cancer metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据