4.4 Article

Inverse-problem approach for particle digital holography:: accurate location based on local optimization

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAA.24.001164

关键词

-

类别

向作者/读者索取更多资源

We propose a microparticle localization scheme in digital holography. Most conventional digital holography methods are based on Fresnel transform and present several problems such as twin-image noise, border effects, and other effects. To avoid these difficulties, we propose an inverse-problem approach, which yields the optimal particle set that best models the observed hologram image. We resolve this global optimization problem by conventional particle detection followed by a local refinement for each particle. Results for both simulated and real digital holograms show strong improvement in the localization of the particles, particularly along the depth dimension. In our simulations, the position precision is >= 1 mu m rms. Our results also show that the localization precision does not deteriorate for particles near the edge of the field of view. (c) 2007 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据