4.5 Article

Preliminary investigation of mathematical modeling of stainless steelmaking in an AOD converter: Mathematical model of the process

期刊

STEEL RESEARCH INTERNATIONAL
卷 78, 期 4, 页码 305-310

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/srin.200705896

关键词

stainless steelmaking; AOD converter; side and top combined blowing process; mathematical modeling

向作者/读者索取更多资源

Mathematical modeling of stainless steelmaking in an AOD (argon-oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing ACID process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation-reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non-reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non-isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据