4.5 Article

Optical glutamate sensor for spatiotemporal analysis of synaptic transmission

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 25, 期 8, 页码 2249-2259

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1460-9568.2007.05511.x

关键词

EOS; fluorescent sensor; imaging; Oregon green; synapse

向作者/读者索取更多资源

Imaging neurotransmission is expected to greatly improve our understanding of the mechanisms and regulations of synaptic transmission. Aiming at imaging glutamate, a major excitatory neurotransmitter in the CNS, we developed a novel optical glutamate probe, which consists of a ligand-binding domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor glutamate receptor GluR2 subunit and a small molecule fluorescent dye. We expected that such fluorescent conjugates might report the microenvironmental changes upon protein conformational changes elicited by glutamate binding. After more than 100 conjugates were tested, we finally obtained a conjugate named E (glutamate) optical sensor (EOS), which showed maximally 37% change in fluorescence intensity upon binding of glutamate with a dissociation constant of 148 nm. By immobilizing EOS on the cell surface of hippocampal neuronal culture preparations, we pursued in situ spatial mapping of synaptically released glutamate following presynaptic firing. Results showed that a single firing was sufficient to obtain high-resolution images of glutamate release, indicating the remarkable sensitivity of this technique. Furthermore, we monitored the time course of changes in presynaptic activity induced by phorbol ester and found heterogeneity in presynaptic modulation. These results indicate that EOS can be generally applicable to evaluation of presynaptic modulation and plasticity. This EOS-based glutamate imaging method is useful to address numerous fundamental issues about glutamatergic neurotransmission in the CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据