4.8 Article

Entanglement percolation in quantum networks

期刊

NATURE PHYSICS
卷 3, 期 4, 页码 256-259

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys549

关键词

-

资金

  1. ICREA Funding Source: Custom

向作者/读者索取更多资源

Quantum networks are composed of nodes that can send and receive quantum states by exchanging photons(1). Their goal is to facilitate quantum communication between any nodes, something that can be used to send secret messages in a secure way(2,3), and to communicate more efficiently than in classical networks(4). These goals can be achieved, for instance, via teleportation(5). Here we show that the design of efficient quantum-communication protocols in quantum networks involves intriguing quantum phenomena, depending both on the way the nodes are connected and on the entanglement between them. These phenomena can be used to design protocols that overcome the exponential decrease of signals with the number of nodes. We relate the problem of establishing maximally entangled states between nodes to classical percolation in statistical mechanics(6), and demonstrate that phase transitions(7) can be used to optimize the operation of quantum networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据