4.7 Article

Image fusion using the Ehlers spectral characteristics preservation algorithm

期刊

GISCIENCE & REMOTE SENSING
卷 44, 期 2, 页码 93-116

出版社

TAYLOR & FRANCIS LTD
DOI: 10.2747/1548-1603.44.2.93

关键词

-

向作者/读者索取更多资源

Image fusion is a technique that is used to combine the spatial structure of a high-resolution panchromatic image with the spectral information of a low-resolution multispectral image to produce a high-resolution multispectral image. Currently, image fusion techniques via color or statistical transforms such as the Intensity-Hue-Saturation (IHS) and principal component (PC) methods are still widely used. These methods create multispectral images of higher spatial resolution but usually at the cost of color distortions in the fused images. This is especially true if the wavelength range of the panchromatic image does not correspond to that of the employed multispectral bands or for multitemporal/multisensoral fusion. To overcome the color distortion problem, a number of new fusion methods have been developed over the last years. One of these is the Ehlers fusion algorithm, which is based on an IHS transform coupled with adaptive filtering in the Fourier domain. This method preserves the spectral characteristics of the lower spatial resolution multispectral images for single-sensor, multi-sensor, and multi-temporal fusion. A comparison between this method and three sophisticated new fusion techniques that are available in commercial image processing software is presented in this paper using multitemporal multi-sensor fusion with SPOT multispectral and Ikonos panchromatic datasets as well as single-sensor single-date multispectral and panchromatic Quickbird data. The fused images are compared visually and with statistical methods that are objective, reproducible, and quantitative. It can be shown that the sophisticated methods such as Gram Schmidt fusion, CN spectral sharpening, and the modified IHS provide good results in color preservation for single sensor fusion. For multi-temporal multi-sensor fusion, however, these methods produce significant changes in spectral characteristics for the fused datasets. This is not the case for the Ehlers fusion algorithm, which shows no recognizable color distortion even for multi-temporal and multi-sensor datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据