4.2 Article

Model for the regulation of size in the wing imaginal disc of Drosophila

期刊

MECHANISMS OF DEVELOPMENT
卷 124, 期 4, 页码 318-326

出版社

ELSEVIER
DOI: 10.1016/j.mod.2006.12.005

关键词

organ size; growth control; wing disc; Drosophila; Dpp; mechanical forces; computer simulations

向作者/读者索取更多资源

For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapentaplegic (Dpp), a key inducer of growth, forms a gradient. Here, we present a model for the control of growth in the wing imaginal disc, which can account for the uniform occurrence and termination of growth. A central feature of the model is that net growth is not only regulated by growth factors, but by mechanical forces as well. According to the model, growth factors like Dpp induce growth in the center of the disc, which subsequently causes a tangential stretching of surrounding peripheral regions. Above a certain threshold, this stretching stimulates growth in these peripheral regions. Since the stretching is not completely compensated for by the induced growth, the peripheral regions will compress the center of the disc, leading to an inhibition of growth in the center. The larger the disc, the stronger this compression becomes and hence the stronger the inhibiting effect. Growth ceases when the growth factors can no longer overcome this inhibition. With numerical simulations we show that the model indeed yields uniform growth. Furthermore, the model can also account for other experimental data on growth in the wing disc. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据