4.4 Article

Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 97, 期 4, 页码 2851-2862

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00860.2006

关键词

-

资金

  1. NIMH NIH HHS [F31 MH-077430, R01 MH-066962] Funding Source: Medline

向作者/读者索取更多资源

N-methyl-D-aspartate receptors (NMDARs) play a critical role in transducing neuronal activity patterns into changes in synaptic strength. However, how they mediate this transduction in response to physiological stimuli has remained elusive. In particular, it has been debated whether different NMDAR subtypes play opposing signaling roles in synaptic plasticity. Using perforated patch-clamp recordings from pairs of synaptically connected glutamatergic neurons in dissociated hippocampal culture, we found that spike-timing-dependent potentiation induced by pairing pre- and postsynaptic spikes required the activation of a fast component of NMDAR current that is likely to be mediated by NR2A-containing NMDARs (NR2A-NRs). In contrast, spike-timing-dependent depression required a slow component of NMDAR current carried by NR2B-containing NMDARs (NR2BNRs). CV analysis showed that the locus of this depression was primarily presynaptic in pairs of cells making strong synaptic connections, whereas weaker synapses showed no clear preference for pre- or postsynaptic expression. This depression was not significantly reduced by antagonism of the CB1 receptor, in contrast to spike-timing-dependent depression in the neocortex that requires presynaptic CB1 signaling. With blockade of NR2B-NRs, spike triplets that contained both potentiating and depressing spike-timing components induced net potentiation. However, when the putative NR2A-NR population is inhibited, these spike triplets resulted in either depression or no net change, depending on the temporal order of the spike-timing components. These results imply a dynamic competition between signaling modules that can be biased by differentially antagonizing NMDAR subtypes during the induction of spike-timing-dependent plasticity. Using a simple model, we show that such a modular competition recapitulates our observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据