4.6 Article

Role of entanglement and correlations in mixed-state quantum computation

期刊

PHYSICAL REVIEW A
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.75.042310

关键词

-

向作者/读者索取更多资源

In a quantum computation with pure states, the generation of large amounts of entanglement is known to be necessary for a speedup with respect to classical computations. However, examples of quantum computations with mixed states are known, such as the deterministic computation with one quantum qubit (DQC1) model [Knill and Laflamme, Phys. Rev. Lett. 81, 5672 (1998)], in which entanglement is at most marginally present, and yet a computational speedup is believed to occur. Correlations, and not entanglement, have been identified as a necessary ingredient for mixed-state quantum computation speedups. Here we show that correlations, as measured through the operator Schmidt rank, are indeed present in large amounts in the DQC1 circuit. This provides evidence for the preclusion of efficient classical simulation of DQC1 by means of a whole class of classical simulation algorithms, thereby reinforcing the conjecture that DQC1 leads to a genuine quantum computational speedup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据