4.6 Article

Protecting an optical qubit against photon loss

期刊

PHYSICAL REVIEW A
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.75.042316

关键词

-

向作者/读者索取更多资源

We consider quantum error-correction codes for multimode bosonic systems, such as optical fields, that are affected by amplitude damping. We demonstrate that the most accessible method of transforming optical systems with the help of passive linear networks has limited usefulness in preparing and manipulating such codes. These limitations stem directly from the recoverability condition for one-photon loss. We introduce a three-photon code protecting against the first order of amplitude damping, i.e., a single photon loss, and discuss its preparation using linear optics with single-photon sources and conditional detection. Quantum state and process tomography in the code subspace can be implemented using passive linear optics and photon counting. An experimental proof-of-principle demonstration of elements of the proposed quantum error correction scheme for a one-photon erasure lies well within present technological capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据