4.7 Article

Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 292, 期 4, 页码 C1291-C1297

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00336.2006

关键词

chloride channel 1; nonsense-mediated decay; alternative splicing; CUG repeats; developmental regulation; muscular dystrophy; ion channel

资金

  1. NIAMS NIH HHS [AR-050762, AR-48143, AR-046806] Funding Source: Medline
  2. NIDCR NIH HHS [T32-DE-07202] Funding Source: Medline

向作者/读者索取更多资源

Transmembrane chloride ion conductance in skeletal muscle increases during early postnatal development. A transgenic mouse model of myotonic dystrophy type 1 ( DM1) displays decreased sarcolemmal chloride conductance. Both effects result from modulation of chloride channel 1 ( CLCN1) expression, but the respective contributions of transcriptional vs. posttranscriptional regulation are unknown. Here we show that alternative splicing of CLCN1 undergoes a physiological splicing transition during the first 3 wk of postnatal life in mice. During this interval, there is a switch to production of CLCN1 splice products having an intact reading frame, an upregulation of CLCN1 mRNA encoding full-length channel protein, and an increase of CLCN1 function, as determined by patch-clamp analysis of single muscle fibers. In a transgenic mouse model of DM1, however, the splicing transition does not occur, CLCN1 channel function remains low throughout the postnatal interval, and muscle fibers display myotonic discharges. Thus alternative splicing is a posttranscriptional mechanism regulating chloride conductance during muscle development, and the chloride channelopathy in a transgenic mouse model of DM1 results from a failure to execute a splicing transition for CLCN1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据