4.5 Article

Performance comparison of scanning electrical mobility spectrometers

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 41, 期 4, 页码 360-368

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820701203199

关键词

-

向作者/读者索取更多资源

Scanning electrical mobility spectrometers (SEMS) are commonly used for near real-time ultrafine particle size distribution measurements. Analysis of SEMS measurements to calculate particle size distributions requires detailed understanding of instrument characteristics and operation. Varying instrument designs are used in the different commercial SEMS systems, and data analysis with these instruments requires accurate knowledge of their relative performance. In this study, an experimental approach to evaluate and reconcile differences between different SEMS instruments is established. This approach is used to characterize the relative performance of two SEMS systems-TSI's SMPS 3936-L22 and MSP's WPS XP1000-for particle sizes in the range of 20 to 300 nm. In these tests, the instruments were operated under a low flowrate condition with aerosol and sheath air flows of 0.3 and 3 LPM, respectively. Measurements show that the particle sizing characteristics of the instruments are very consistent with each other over the entire range of particle sizes studied. Particle number characteristics are dependent on the treatment of particle losses in the system and accounting of non-idealities of transfer function. The number concentrations reported by two instruments are generally consistent with each other and with an upstream reference counter for particle sizes larger than similar to 90 nm. For smaller particles, the low flowrate operation of the two systems results in significant penetration losses. A net particle detection efficiency (NPDE) factor for the two systems was determined from experiments with monodisperse aerosol. This factor is seen to be effective in characterizing and reconciling measurements made with these two SEMS instruments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据