4.2 Article

Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations

期刊

THEORETICAL CHEMISTRY ACCOUNTS
卷 117, 期 4, 页码 565-574

出版社

SPRINGER
DOI: 10.1007/s00214-006-0189-y

关键词

rutile; TiO2; DFT; surface

向作者/读者索取更多资源

In this paper, geometric bulk parameters, bulk moduli, energy gaps and relative stabilities of the TiO2 anatase and rutile phases were determined from periodic DFT calculations. Then, for the rutile phase, structures, relaxations and surface energies of the (110), (100), (101) and (001) faces were computed. The calculated surface energies are consistent with the natural rutile powder composition, even if a dependence on the number of layers of the slab used to model the surface was identified. Internal constraints, consisting in freezing some internal layers of the slab to atomic bulk positions, were thus added to mimic the bulk hardness in order to stabilise the computed surface energies for thinner systems. In parallel, the influence of pseudo-potentials was studied and it appears that four valence electrons for titanium atoms are sufficient. The aim of this study was to optimise accurate rutile TiO2 surface models that will be used in further calculations to investigate water and uranyl ion sorption mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据