4.2 Article

Accurate charge density of trialanine: a comparison of the multipole formalism and the maximum entropy method (MEM)

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0108768106052153

关键词

-

向作者/读者索取更多资源

An accurate charge density study of trialanine is presented with the maximum entropy method (MEM), on the basis of the same reflection data as was used for a multipole refinement [Rodel et al. (2006). Org. Biomol. Chem. 4, 475-481]. With the MEM, the optimum fit to the data is found to correspond to a final value of chi(2) which is less than its statistical expectation value N-Ref, where N-Ref is the number of reflections. A refinement strategy is presented that determines the optimal goal for chi(2). It is shown that the MEM and the multipole method are on a par with regard to the reproduction of atomic charges and volumes, general topological features and trends in the charge density in the bond critical points (BCPs). Regarding the values of the charge densities in the BCPs, agreement between quantum chemical calculations, the multipole method and MEM is good, but not perfect. In the case of the Laplacians, the coincidence is not as good and especially the Laplacians of the C-O bonds differ strongly. One of the reasons for the observed differences in the topological parameters in the BCPs is the fact that MEM densities still include the effects of thermal motion, whereas multipole densities are free from the effects of thermal motion. Hydrogen bonds are more convincingly reproduced by the MEM than by multipole models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据