4.4 Article

Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB

期刊

BULLETIN OF MATHEMATICAL BIOLOGY
卷 69, 期 3, 页码 931-956

出版社

SPRINGER
DOI: 10.1007/s11538-006-9062-3

关键词

reaction-diffusion system; predator-prey interaction; finite difference method; MATLAB

向作者/读者索取更多资源

We present two finite-difference algorithms for studying the dynamics of spatially extended predator-prey interactions with the Holling type II functional response and logistic growth of the prey. The algorithms are stable and convergent provided the time step is below a (non-restrictive) critical value. This is advantageous as it is well-known that the dynamics of approximations of differential equations (DEs) can differ significantly from that of the underlying DEs themselves. This is particularly important for the spatially extended systems that are studied in this paper as they display a wide spectrum of ecologically relevant behavior, including chaos. Furthermore, there are implementational advantages of the methods. For example, due to the structure of the resulting linear systems, standard direct, and iterative solvers are guaranteed to converge. We also present the results of numerical experiments in one and two space dimensions and illustrate the simplicity of the numerical methods with short programs MATLAB. Users can download, edit, and run the codes from http://www.uoguelph.ca/similar to mgarvie/, to investigate the key dynamical properties of spatially extended predator-prey interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据