4.6 Article

Resonating valence bonds and mean-field d-wave superconductivity in graphite

期刊

PHYSICAL REVIEW B
卷 75, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.134512

关键词

-

向作者/读者索取更多资源

We investigate the possibility of inducing superconductivity in a graphite layer by electronic correlation effects. We use a phenomenological microscopic Hamiltonian which includes nearest-neighbor hopping and an interaction term which explicitly favors nearest-neighbor spin singlets through the well-known resonance valence bond (RVB) character of planar organic molecules. Treating this Hamiltonian in mean-field theory, allowing for bond-dependent variation of the RVB order parameter, we show that both s- and d-wave superconducting states are possible. The d-wave solution belongs to a two-dimensional representation and breaks time-reversal symmetry. At zero doping there exists a quantum critical point at the dimensionless coupling J/t=1.91 and the s- and d-wave solutions are degenerate for low temperatures. At finite doping the d-wave solution has a significantly higher T-c than the s-wave solution. By using density functional theory we show that the doping induced from sulfur absorption on a graphite layer is enough to cause an electronically driven d-wave superconductivity at graphite-sulfur interfaces. We also discuss applying our results to the case of the intercalated graphites, as well as the validity of a mean-field approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据