4.8 Article

Molecular modeling and site-directed mutagenesis reveal the benzylisoquinoline binding site of the short-chain dehydrogenase/reductase salutaridine reductase

期刊

PLANT PHYSIOLOGY
卷 143, 期 4, 页码 1493-1503

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.106.095166

关键词

-

向作者/读者索取更多资源

Recently, the NADPH-dependent short-chain dehydrogenase/reductase (SDR) salutaridine reductase (E.C. 1.1.1.248) implicated in morphine biosynthesis was cloned from Papaver somniferum. In this report, a homology model of the Papaver bracteatum homolog was created based on the x-ray structure of human carbonyl reductase 1. The model shows the typical alpha/beta-folding pattern of SDRs, including the four additional helices alpha F'-1 to alpha F'-4 assumed to prevent the dimerization of the monomeric short-chain dehyrogenases/reductases. Site-directed mutagenesis of asparagine-152, serine-180, tyrosine-236, and lysine-240 resulted in enzyme variants with strongly reduced performance or inactive enzymes, showing the involvement of these residues in the proton transfer system for the reduction of salutaridine. The strong preference for NADPH over NADH could be abolished by replacement of arginine residues 44 and 48 by glutamic acid, confirming the interaction between the arginines and the 2'-phosphate group. Docking of salutaridine into the active site revealed nine amino acids presumably responsible for the high substrate specificity of salutaridine reductase. Some of these residues are arranged in the right position by an additional alpha E' helix, which is not present in SDRs analyzed so far. Enzyme kinetic data from mutagenic replacement emphasize the critical role of these residues in salutaridine binding and provide the first data on the molecular interaction of benzylisoquinoline alkaloids with enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据