4.6 Article

A Comparison of Propofol- and Dexmedetomidine-induced Electroencephalogram Dynamics Using Spectral and Coherence Analysis

期刊

ANESTHESIOLOGY
卷 121, 期 5, 页码 978-989

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/ALN.0000000000000419

关键词

-

资金

  1. National Institutes of Health, Bethesda, Maryland [DP2-OD006454, DP1-OD003646, TR01-GM104948, T32GM007592]
  2. Foundation of Anesthesia Education and Research, Rochester, Minnesota
  3. Massachusetts General Hospital Faculty Development Award, Boston, Massachusetts
  4. Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts

向作者/读者索取更多资源

Background: Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1 to 1 Hz), delta (1 to 4 Hz), propofol-induced alpha (8 to 12 Hz), and dexmedetomidine-induced spindle (12 to 16 Hz) oscillations. However, these drugs have different molecular mechanisms and behavioral properties and are likely accompanied by distinguishing neural circuit dynamics. Methods: The authors measured 64-channel electroencephalogram under dexmedetomidine (n = 9) and propofol (n = 8) in healthy volunteers, 18 to 36 yr of age. The authors administered dexmedetomidine with a 1-mu g/kg loading bolus over 10 min, followed by a 0.7 mu g kg(-1) h(-1) infusion. For propofol, the authors used a computer-controlled infusion to target the effect-site concentration gradually from 0 to 5 g/ml. Volunteers listened to auditory stimuli and responded by button press to determine unconsciousness. The authors analyzed the electroencephalogram using multitaper spectral and coherence analysis. Results: Dexmedetomidine was characterized by spindles with maximum power and coherence at approximately 13 Hz (mean SD; power, -10.8 +/- 3.6 dB; coherence, 0.8 +/- 0.08), whereas propofol was characterized with frontal alpha oscillations with peak frequency at approximately 11 Hz (power, 1.1 +/- 4.5 dB; coherence, 0.9 +/- 0.05). Notably, slow oscillation power during a general anesthetic state under propofol (power, 13.2 +/- 2.4 dB) was much larger than during sedative states under both propofol (power, -2.5 +/- 3.5 dB) and dexmedetomidine (power, -0.4 +/- 3.1 dB). Conclusion: The results indicate that dexmedetomidine and propofol place patients into different brain states and suggest that propofol enables a deeper state of unconsciousness by inducing large-amplitude slow oscillations that produce prolonged states of neuronal silence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据