4.7 Article

The cortical representation of objects rotating in depth

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 14, 页码 3864-3874

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0340-07.2007

关键词

apparent rotation; fMRI; adaptation; motion processing; object perception; viewpoint debate

向作者/读者索取更多资源

The perception of motion provides valuable interpolations of the visual scene. This fundamental capacity of the visual system is evident in apparent rotation: by presenting only two images of an object rotated in space, a vivid illusion of a smooth apparent motion in three dimensions can be induced. The unseen interpolated rotation views are filled in by the visual system. In the present study, we identified the cortical network responsible for this filling-in process. We argue that cross talk between areas of the ventral and dorsal visual pathways promote the illusion of smooth apparent rotation. Most interestingly, the network represents the unseen object views. Using functional magnetic resonance adaptation, we are able to show that the cortical network selectively adapts to the illusory object views. Our findings provide strong evidence for cortical representations of three-dimensional rotating objects that are view invariant with respect to the rotation path. Furthermore, our results confirm psychophysical investigations that unseen interpolated rotation views can be primed by apparent motion. By applying functional magnetic resonance adaptation, we show for the first time cortical adaptation to unseen objects. Together, our neuroimaging study advances the understanding of the cortical mechanisms mediating the influence of motion on object processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据