4.6 Article

Reconfiguration of Network Hub Structure after Propofol-induced Unconsciousness

期刊

ANESTHESIOLOGY
卷 119, 期 6, 页码 1347-1359

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/ALN.0b013e3182a8ec8c

关键词

-

资金

  1. National Institutes of Health, Bethesda, Maryland [1RO1GM098578]
  2. Original Technology Research Program for Brain Science through the National Research Foundation of Korea, Yuseong-gu, Daejeon, Korea [2010-0018847]

向作者/读者索取更多资源

Introduction: General anesthesia induces unconsciousness along with functional changes in brain networks. Considering the essential role of hub structures for efficient information transmission, the authors hypothesized that anesthetics have an effect on the hub structure of functional brain networks. Methods: Graph theoretical network analysis was carried out to study the network properties of 21-channel electroencephalogram data from 10 human volunteers anesthetized on two occasions. The functional brain network was defined by Phase Lag Index, a coherence measure, for three states: wakefulness, loss of consciousness induced by the anesthetic propofol, and recovery of consciousness. The hub nodes were determined by the largest centralities. The correlation between the altered hub organization and the phase relationship between electroencephalographic channels was investigated. Results: Topology rather than connection strength of functional networks correlated with states of consciousness. The average path length, clustering coefficient, and modularity significantly increased after administration of propofol, which disrupted long-range connections. In particular, the strength of hub nodes significantly decreased. The primary hub location shifted from the parietal to frontal region, in association with propofol-induced unconsciousness. The phase lead of frontal to parietal regions in the a frequency band (8-13 Hz) observed during wakefulness reversed direction after propofol and returned during recovery. Conclusions: Propofol reconfigures network hub structure in the brain and reverses the phase relationship between frontal and parietal regions. Changes in network topology are more closely associated with states of consciousness than connectivity and may be the primary mechanism for the observed loss of frontal to parietal feedback during general anesthesia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据