4.6 Article

Resistance switching properties of sol-gel derived SrZrO3 based memory thin films

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 40, 期 7, 页码 2157-2161

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/40/7/045

关键词

-

向作者/读者索取更多资源

Sol-gel derived SrZrO3 based metal/insulator/metal (MIM) devices were fabricated to study their reversible resistance switching properties operated by dc voltage sweep and voltage pulses. The leakage-state of the device is changed from the original-state and finally switched between the high leakage-state (H-state) and the low leakage-state (L-state). The resistance ratio between the H-state and the L-state is about 10(4), and the leakage-states are not changed without power supply, which is suitable for nonvolatile memory application. The conduction mechanisms of the original-state, the H-state and the L-state obey Schottky emission, Frenkel-Poole emission and Ohmic conduction, respectively. The first device resistance switching, called the forming process, changed from the original-state to the H-state. The switching time from the H-state to the L-state is much longer than that from the L-state to the H-state and that of the forming process. The decay behaviours of leakage current after resistance switching are influenced by pulse width and voltage stress directions. The switching time can be accumulated to switch the device from the H-state to the L-state, which could be a guide to multi-level memory applications. The model of conducting paths can well explain the electrical behaviours of our resistance switching devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据