4.7 Article

Dissipative particle dynamics simulation of pore-scale multiphase fluid flow

期刊

WATER RESOURCES RESEARCH
卷 43, 期 4, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006WR004856

关键词

-

向作者/读者索取更多资源

[ 1] Multiphase fluid flow through porous media involves complex fluid dynamics, and it is difficult to model such complex behavior, on the pore scale, using grid-based continuum models. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method, to the simulation of pore-scale multiphase fluid flows under a variety of flow conditions is described. We demonstrate that the conventional DPD method using purely repulsive conservative ( nondissipative) particle-particle interactions is capable of modeling single-phase flow fields in saturated porous media. In order to simulate unsaturated multiphase flow through porous media, we applied a modified model for the conservative particle-particle interactions that combines short-range repulsive and long-range attractive interactions. This form for the conservative particle-particle interactions allows the behavior of multiphase systems consisting of gases, liquids, and solids to be simulated. We also demonstrated that the flow of both wetting and nonwetting fluids through porous media can be simulated by controlling the ratios between the fluid-fluid and fluid-solid (fluid-wall) interparticle interaction strengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据