4.8 Article

Competing ferromagnetism in high-temperature copper oxide superconductors

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0701265104

关键词

quantum-phase transition; non-Fermi liquid; broken symmetry; quantum order; criticality

向作者/读者索取更多资源

The extreme variability of observables across the phase diagram of the cuprate high-temperature superconductors has remained a profound mystery, with no convincing explanation for the superconducting dome. Although much attention has been paid to the underdoped regime of the hole-doped cuprates because of its proximity to a complex Mott insulating phase, little attention has been paid to the overdoped regime. Experiments are beginning to reveal that the phenomenology of the overdoped regime is just as puzzling. For example, the electrons appear to form a Landau Fermi liquid, but this interpretation is problematic; any trace of Mott phenomena, as signified by incommensurate antiferromagnetic fluctuations, is absent, and the uniform spin susceptibility shows a ferromagnetic upturn. Here, we show and justify that many of these puzzles can be resolved if we assume that competing ferromagnetic fluctuations are simultaneously present with superconductivity, and the termination of the superconducting dome in the overdoped regime marks a quantum critical point beyond which there should be a genuine ferromagnetic phase at zero temperature. We propose experiments and make predictions to test our theory and suggest that an effort must be mounted to elucidate the nature of the overdoped regime, if the problem of high-temperature superconductivity is to be solved. Our approach places competing order as the root of the complexity of the cuprate phase diagram.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据