4.4 Article

Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein

期刊

BIOCHEMISTRY
卷 46, 期 14, 页码 4261-4271

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi602473r

关键词

-

向作者/读者索取更多资源

The prion protein (PrP) has been identified as a metalloprotein capable of binding multiple copper ions and possibly zinc. Recent studies now indicate that prion self-recognition may be an important factor in both the normal function and misfunction of this protein. We have developed fluorescently labeled models of the prion protein that allow prion-prion interactions and metal binding to be investigated on the molecular level. Peptides encompassing the full metal binding region were anchored to the surface of small unilamellar vesicles, and PrP-PrP interactions were monitored by fluorescence spectroscopy as a function of added metal. Both Cu2+ and Zn2+ were found to cause an increase in the level of PrP-PrP interactions, by 117 and 300%, respectively, whereas other metals such as Ni2+, Co2+, and Ca2+ had no effect. The binding of either of these cofactors appears to act as a switch that induces PrP-PrP interactions in a reversible manner. Both glutamine and tryptophan residues, which occur frequently in the metal binding region of PrP, were found to be important in mediating PrP-PrP interactions. Experiments demonstrate that tryptophan residues are also responsible for the low level of PrP-PrP interactions observed in the absence of Cu2+ and Zn2+, and this is further supported by molecular modeling. Overall, our results indicate that PrP may be a bifunctional molecule capable of responding to fluctuations in both neuronal Cu2+ and Zn2+ levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据