4.6 Article

Asymptotic exponents from low-Reynolds-number flows

期刊

NEW JOURNAL OF PHYSICS
卷 9, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/9/4/089

关键词

-

向作者/读者索取更多资源

The high-order statistics of fluctuations in velocity gradients in the crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales are studied by direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly improved resolution. The derivative moments for orders 0 <= n <= 8 are represented well as powers of the Reynolds number, Re, in the range 380 <= Re <= 5275, where Re is based on the periodic box length L-x. These low-Reynolds-number flows give no hint of scaling in the inertial range even when extended self-similarity is applied. Yet, the DNS scaling exponents of velocity gradients agree well with those deduced, using a recent theory of anomalous scaling, from the scaling exponents of the longitudinal structure functions at infinitely high Reynolds numbers. This suggests that the asymptotic state of turbulence is attained for the velocity gradients at far lower Reynolds numbers than those required for the inertial range to appear. We discuss these findings in the light of multifractal formalism. Our numerical studies also resolve the crossover of the velocity gradient statistics from Gaussian to non-Gaussian behaviour that occurs as the Reynolds number is increased.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据