4.7 Article

Human cortical neurons originate from radial glia and neuron-restricted progenitors

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 15, 页码 4132-4145

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0111-07.2007

关键词

cerebral cortex development; primates; human fetal cell cultures; LeX immunocytochemistry; transfection; patch-clamp recording

向作者/读者索取更多资源

Understanding the molecular and physiological determinants of cortical neuronal progenitor cells is essential for understanding the development of the human brain in health and in disease. We used surface marker fucose N-acetyl lactosamine (LeX) (also known as CD15) to isolate progenitor cells from the cortical ventricular/subventricular zone of human fetal brain at the second trimester of gestation and to study their progeny in vitro. LeX(+) cells had typical bipolar morphology, radial orientation, and antigen profiles, characterizing them as a subtype of radial glia (RG) cells. Four complementary experimental techniques (clonal analysis, immunofluorescence, transfection experiments, and patch-clamp recordings) indicated that this subtype of RG generates mainly astrocytes but also a small number of cortical neurons. The neurogenic capabilities of RGs were both region and stage dependent. Present results provide the first direct evidence that RGs in the human cerebral cortex serve as neuronal progenitors. Simultaneously, another progenitor subtype was identified as proliferating cells labeled with neuronal (beta-III-tubulin and doublecortin) but not RG markers [GFAP, vimentin, and BLBP (brain lipid-binding protein)]. Proliferative and antigenic characteristics of these cells suggested their neuron-restricted progenitor status. In summary, our in vitro study suggests that diverse populations of cortical progenitor cells, including multipotent RGs and neuron-restricted progenitors, contribute differentially to cortical neurogenesis at the second trimester of gestation in human cerebral cortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据