4.8 Article Proceedings Paper

A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell

期刊

BIOSENSORS & BIOELECTRONICS
卷 22, 期 9-10, 页码 2250-2255

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.11.004

关键词

glucose dehydrogenase; continuous glucose monitoring; bio-fuel cell; glucose sensor; direct electron transfer

向作者/读者索取更多资源

In this paper we present a novel wireless glucose biosensing system employing direct electron transfer principle based enzyme fuel cell. Using the glucose dehydrogenase complex, which is composed of a catalytic subunit containing FAD, the cytochrome c subunit that harbors heme c as the electron transfer subunit, and chaperone-like subunit, a direct electron transfer-type glucose enzyme fuel cell was constructed. The enzyme glucose fuel cell generated electric power, and the open-circuit voltage showed glucose concentration dependence, which suggests potential applications for this glucose-sensing system. We constructed a miniaturized all-in-one glucose enzyme fuel cell, which represents a compartmentless fuel that is based on the direct electron transfer principle. This involved the combination of a wireless transmitter system and a simple and miniaturized continuous glucose monitoring system, which operated continuously for about 3 days with stable response. This is the first demonstration of an enzyme-based direct electron transfer-type enzyme fuel cell and fuel cell-type glucose sensor which can be utilized as a subcutaneously implantable system for continuous glucose monitoring. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据