4.8 Article

Spraying mode effect on droplet formation and ion chemistry in electrosprays

期刊

ANALYTICAL CHEMISTRY
卷 79, 期 8, 页码 3105-3116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac062382i

关键词

-

向作者/读者索取更多资源

Depending on the spraying conditions and fluid properties, a variety of electrospray regimes exists. Here we explore the changes in ion production that accompany the transitions among the three axial spraying modes, the burst mode, the pulsating Taylor cone mode, and the cone-jet mode. Spray current oscillation and phase Doppler anemometry measurements, fast imaging of the electrified meniscus, and mass spectrometry are utilized to study the formation, size, velocity, and chemical composition of droplets produced in the three modes. High-speed images indicate that the primary droplets are produced by varicose waves and lateral kink instabilities on the liquid jet emerging from the Taylor cone, whereas secondary droplets are formed by fission. Dramatic changes in the droplet size distributions result from the various production and breakup mechanisms observed at different emitter voltages and liquid flow rates. We demonstrate that droplet fission can be facilitated by space charge effects along the liquid jet and in the plume. Compared to the other two regimes, a significantly enhanced signal-to-noise ratio, a lower degree of analyte oxidation, and milder fragmentation are observed for the cone-jet mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据