4.6 Article

Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2724808

关键词

-

向作者/读者索取更多资源

A n-ZnO/p-Si thin film heterojunction has been fabricated by a low cost sol-gel technique. The wavelength dependent photoresponse properties of the heterojunction is investigated in detail by studying the effect of light illumination on current-voltage (I-V) characteristics, photocurrent, and photocapacitance spectra at room temperature. It shows good diode characteristics with I-F/I-R=3.4 x 10(3) at 4 V and reverse leakage current density of 7.6 x 10(-5) A cm(-2) at -5 V. From the photocurrent spectra, it is observed that the visible photons are absorbed in the depleted p-Si under reverse bias conditions, while ultraviolet (UV) photons are absorbed in the depleted n-ZnO under positive bias conditions. This indicates that such a sol-gel n-ZnO/p-Si thin film heterojunction can be used to sense both UV and visible photons though the photoresponse for UV is much slower than that of visible. The photocapacitance measurements suggest the presence of a shallow defect level in the sol-gel derived ZnO film which acts as an electron trap at similar to 0.16 eV below the conduction band. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据