4.7 Article

ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 42, 期 8, 页码 1165-1177

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2007.01.015

关键词

endothelium; ROS; MAP kinase; ischemia-reperfusion; free radicals

向作者/读者索取更多资源

Reactive oxygen species (ROS)-induced injury has been shown to occur during the reperfusion phase of ischemia-reperfusion and ROS are known to induce signaling events. We hypothesized that oxygen sensing in endothelial cells is also dependent on internal redox changes during hypoxia and that endothelial cells respond to changing oxygen environments via signaling, switching to an inflammatory phenotype. Endothelial cells exposed to relative hypoxia or the mitochondrial inhibitors rotenone, antimycin A, or FCCP show loss of mitochondrial membrane potential. During hypoxia, an increase in cytoplasmic ROS and glutathione S-transferase activity occurred, suggesting changes in intracellular redox state, mimicked with rotenone or FCCP but inhibited by antimycin A. Phosphorylation of stress-responsive mitogen-activated protein kinases occurred in hypoxia and was rapid and prolonged. Phosphorylation was inhibited by vitamin C, N-acetyl cysteine, or antimycin A. Chelation of intracellular calcium inhibits phosphorylation but the mitochondrial transition pore inhibitor cyclosporin A had no effect. Reoxygenation caused a further round of signaling, which was rapid but transient. Functionally, adhesion of neutrophils after hypoxia-reoxygenation under flow is ROS, P-selectin, and MAPK dependent. Therefore, changes in cellular signaling and phenotype are abrogated by ROS scavengers and suggest their use as therapeutic agents in ischemia-reperfusion. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据