4.6 Article

Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2724803

关键词

-

向作者/读者索取更多资源

In situ electrical measurements during nanoindentation of Czochralski grown p-type crystalline silicon (100) have been performed using a conducting diamond Berkovich indenter tip. Through-tip current monitoring with a sensitivity of similar to 10 pA and extraction of current-voltage curves at various points on the complete load-unload cycle have been used to track the phase transformations of silicon during the loading and unloading cycle. Postindent current-voltage curves prove to be extremely sensitive to phase changes during indentation, as well as to the final phase composition within the indented volume. For example, differences in the final structure are detected by current-voltage measurements even in an unloading regime in which only amorphous silicon is expected to form. The electrical measurements are interpreted with the aid of previously reported transmission electron microscopy and Raman microspectroscopy measurements. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据