4.8 Article

SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells

期刊

CANCER RESEARCH
卷 67, 期 8, 页码 3637-3645

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-3727

关键词

-

类别

资金

  1. NIEHS NIH HHS [R01 ES 03721, T32 ES 07272, P42 ES 013660] Funding Source: Medline

向作者/读者索取更多资源

SV40 virus has emerged as a potential cofactor with asbestos in the development of diffuse malignant mesothelioma, but its precise role in the pathogenesis of this tumor is unclear. SV40 large T antigen is known to inactivate cellular proteins involved in DNA damage and senescence, including p53 and pRb. We hypothesize that SV40 oncoproteins will sensitize mesothelial cells to DNA damage induced by asbestos or chemotherapeutic agents. SV40 oncoprotein expression in murine mesothelial cell lines enhanced spontaneous and asbestos-induced double-strand breaks, indicated by gamma-112AX foci, and potentiated micronucleus formation. Mesothelial cells exposed to asbestos or bleomycin for 96 h acquired senescent-like morphology and displayed elevated senescence-associated beta-galactosidase activity, reduced bromodeoxyuridine (BrdUrd) incorporation, and reduced colony formation. SV40 oncoprotein expression abrogated the senescent phenotype, and transfected cell lines showed an increase in both BrdUrd incorporation and colony formation after prolonged DNA damage. Murine mesothelial cell lines lacking wild-type p53 due to a point mutation or gene rearrangement also failed to senesce in response to asbestos or chemotherapeutic agents. In addition, stress-induced senescence in human mesothelial cell lines was impaired by SV40 oncoprotein expression (MeT-5A), p53 small interfering RNA, or spontaneous p53 mutation (REN). These studies suggest that exposure to DNA-damaging agents can induce senescence in both murine and human mesothelioma cell lines and suggest a major, although not exclusive, role for p53 in this response. SV40 virus may contribute to mesothelioma progression by impairing stress-induced senescence, in part through p53 inactivation, thereby favoring survival and proliferation of mesothelial cells that have sustained DNA damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据