4.8 Article Proceedings Paper

Culturing neuron cells on electrode with self-assembly monolayer

期刊

BIOSENSORS & BIOELECTRONICS
卷 22, 期 9-10, 页码 2346-2350

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.08.021

关键词

neural interface; cortical neuron; self-assembly monolayer; cell culturing; micro-electrode array

向作者/读者索取更多资源

The success of neuronal implantable microsystems relies on the quality of the interface with neuronal cells. Depending on the application, specifically engineered surfaces may either prevent or enhance cell/tissue growth with an appropriate host response. The surface chemistry and topography have major effects on the cell adherence and the interaction between the tissue and devices. We report on a simple technique to precisely explant cortical neurons in a serum-free medium on 2D electrode arrays and investigated the pad size effect on neuron cell culture and immobilization. We produced gold patterns on glass substrates using microfabrication processes. 11-Amino-1-undecanethiol self-assembled monolayer was coated only on the gold surface. Cortical neurons were cultured on the arrays to examine the dependence of neuron growth and cells distribution on pad size. We found that the terminal functional groups of the highly oriented 11-amino-1-undecanethiol thin film are essential for generating cell-adhesive areas for the rat cortical neurons. A 50 mu m x 50 mu m SAM pad size was found to be suitable for single cortical neuron immobilization, while the larger pads provide excellent neuron coverage. This technology may enable precise and localized neuron stimulation and surveillance for both biological research and medical applications. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据