4.8 Article Proceedings Paper

Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics

期刊

BIOSENSORS & BIOELECTRONICS
卷 22, 期 9-10, 页码 1841-1852

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.09.018

关键词

nanoparticles; enzymes; DNA; quantum dots; nanowires; electrochemistry; biosensors

向作者/读者索取更多资源

The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue. was incorporated into a CdS-duplex DNA monolayer associated with a Au electrode, and this facilitated the electron transfer between the electrode and the US NPs. The direction of the photocurrent was controlled by the oxidation state of the intercalator. (iii) Biocatalysts grow metallic NPs, and the absorbance of the NPs provides a means to assay the biocatalytic transformations. This is exemplified with the glucose oxidase-induced growth of An NPs and with the tyrosinase-stimulated growth of Au NPs, in the presence of glucose or tyrosine, respectively. The biocatalytic growth of the metallic NPs is used to grow nanowires on surfaces. Glucose oxidase or alkaline phosphatase functionalized with Au NPs (1.4 nm) acted as 'biocatalytic inks' for the synthesis of metallic nanowires. The deposition of the Au NP-modified glucose oxidase, or the Au NP-modified alkaline phosphatase on Si surfaces by dip-pen nanolithography led to biocatalytic templates, that after interaction with glucose/AuCl4- or p-aminophenolphosphate/Ag+, allowed the synthesis of Au nanowires or Ag nanowires, respectively. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据