4.7 Article

Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain

期刊

AGRICULTURAL WATER MANAGEMENT
卷 89, 期 1-2, 页码 137-147

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2006.12.012

关键词

best management practices; lysimeter; nitrogen use efficiencies; nitrate leaching; water balance; North China Plain

向作者/读者索取更多资源

The Northern China Plain (NCP) produces over 20% of the national grain production. Best management practices (BMP) for intensive irrigated cropping systems of the NCP are based on large nitrogen (N) applications without accounting for N budgets. There are concerns that non-scientific based BMPs may be impacting underground water resources. We conducted the first study in this region, located at the Luancheng Experimental Research Station that measured the effects of N fertilizer rates on nitrate-nitrogen (NO3-N) leaching losses. From October 1, 2001 to September 30, 2004, we used a water balance approach with a neutron probe, weighing lysimeter, and suction cups located at 1.8 m depths on a winter wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation to monitor NO3-N leaching. Residual soil NO3-N, yields, and N uptake by aboveground biomass were also measured. Corn received two surface broadcast applications every year of 50, 100, 150 and 200 kg urea-N ha(-1) for the N-200, N-400, N-600, and N-800 treatments, respectively. The first broadcast application was at seeding and the second at tassel. Similarly, winter wheat received two surface broadcast applications, initially as a pre-plant and a second application at the jointing stage of growth in spring. We monitored NO3-N leaching losses for the N-200, N-400, and N-800 treatments. Average NO3-N leaching losses during wheat-corn season were 6, 58, and 149 kg NO3-N ha(-1) year(-1) for the 200, 400, and 800 kg N ha(-1) year(-1) treatments, respectively. The NO3-N leaching increased with N applications (P < 0.05) and were in agreement with the NO3-N concentrations of 12, 74, and 223 mg NO3-N L-1 for soil water at 1.8 m depths for the 200, 400, and 800 kg N ha(-1) year(-1) treatments, respectively. Higher than needed N fertilizer applications increased the NO3-N leaching losses and reduced the N use efficiency (NUE) without yield increases. We propose that there is a need for a new scientifically based BMP approach for the NCP based on N budgets that credits soil NO3-N before planting, N mineralization from soil organic matter, and other potential N sources as a key mitigation alternative to increase NUE and reduce NO3-N leaching in this region. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据