4.8 Article

Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0610924104

关键词

innate immunity; pattern; prophenoloxidase; Toll

向作者/读者索取更多资源

Recognition of lysine-type peptidoglycan by peptidoglycan recognition protein (PGRP)-SA provokes the activation of the Toll and prophenoloxidase pathways. Here we reveal that a soluble fragment of lysine-type peptidoglycan, a long glycan chain with short stem peptides, is a potent activator of the Drosophila Toll pathway and the prophenoloxidase activation cascade in the beetle Tenebrio molitor. Using this peptidoglycan fragment, we present biochemical evidence that clustering of PGRP-SA molecules on the peptidoglycan is required for the activation of the prophenoloxidase cascade. We subsequently highlight that the lysozymemediated partial digestion of highly cross-linked lysine-type peptidoglycan dramatically increases the binding of PGRP-SA, presumably by inducing clustering of PGRP-SA, which then recruits the Gram-negative bacteria-binding protein 1 homologue and a modular serine protease containing low-density lipoprotein and complement control protein domains. The crucial role of lysozyme in the prophenoloxidase activation cascade is further confirmed in vivo by using a lysozyme inhibitor. Taken together, we propose a model whereby lysozyme presents a processed form of lysine-type peptidoglycan for clustering of PGRP-SA that recruits Gram-negative bacteria-binding protein 1 and the modular serine protease, which leads to the activation of both the Toll and prophenoloxidase pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据