4.7 Review

Molecular cloud regulated star formation in galaxies

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2007.11570.x

关键词

methods : N-body simulations; galaxies : formation; galaxies : ISM

向作者/读者索取更多资源

We describe a numerical implementation of star formation in disc galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics. However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disc, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the GADGET N-body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disc formed in a rotating spherical collapse. Many observed properties of disc galaxies are reproduced well, including the molecular cloud mass spectrum, the molecular fraction as a function of radius, the Schmidt law, the stellar density profile and the appearance of a galactic fountain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据