4.8 Article

Hydrogen production from crude pyrolysis oil by a sequential catalytic process

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 73, 期 1-2, 页码 116-127

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2006.06.014

关键词

bio-oil; pyrolysis oil; hydrogen; sequential catalytic cracking/reforming; supported Ni; coking; regeneration

向作者/读者索取更多资源

A sequential process aiming at hydrogen production was studied over two Ni-based catalysts, using crude beech-wood oil as the feed. The process alternates cracking/reforming steps, during which a H-2 + CO rich stream is produced and carbon is stored on the catalyst, with regeneration steps where the carbon is combusted under oxygen. The two catalysts exhibited good performances for H-2 production from bio-oil, the gaseous products stream consisting in 45-50% H-2. The regeneration step was found fast and efficient, the coke being readily combusted and the catalyst activity fully recovered. A positive heat balance between the endothermic cracking/reforming reactions and the exothermic coke combustion suggests that an autothermal process could be designed. Comparison of the thermal decomposition of bio-oil (empty reactor) with the catalytic cracking revealed that they are first decomposed into primary light gases (CO, CO2, CH4, C2+) and soots. These compounds are further reformed onto the catalyst by the steam contained in bio-oil, and equilibrated via the WGS reaction. The key roles of the catalyst are therefore (i) to improve the overall bio-oil gasification into syngas, (ii) to promote steam reactions and increase hydrogen production by steam reforming and WGS and (iii) to control and determine the nature of the coke formed during the cracking/reforming step. A Ni/Al2O3 catalyst with large Ni particles was found to promote the formation of carbon filaments, whereas on a Ni-K/La2O3-Al2O3 catalyst, with a lower Ni loading and highly dispersed Ni, the carbon was essentially deposited as an amorphous carbon layer. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据