4.7 Article

Soluble beta-amyloid[25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 561, 期 1-3, 页码 85-90

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2007.01.040

关键词

LTP; CA1; neurodegeneration; Alzheimer's disease; memory; (rat)

向作者/读者索取更多资源

Beta-amyloid is a peptide that appears to be responsible for cognitive impairments in patients with Alzheimer's disease. Recent research shows that soluble oligomers of beta-amyloid affect synaptic activity and learning, well before any amyloid has aggregated into plaques. Here we show that injection of 3 x 10 nmol amyloid [25-35] i.c.v. transiently impairs learning of a radial arm maze and the induction of hippocampal long-term potentiation. Furthermore, hippocampal field potentials had been recorded over a period of 21 days and were found to be reduced from day 9 to day 15 (P < 0.001), after which the reduction had reversed to baseline. In the spatial 8-arm learning task, animals had to learn which 3 out of 8 arms had been baited. A significant impairment of working and long-term memory was observed at day 12-20 (P < 0.001), but not at days 3-11 or 20-28. Long-term potentiation induction in the hippocampus area CA1 was also impaired at day 12-20 (P < 0.001), but not at other days. A scrambled peptide sequence version of amyloid did not have any effect. These results emphasise that soluble amyloid fragments already have detrimental effects on brain function well before aggregation occurs. They also show that these effects are reversible, and therefore most likely do not involve neuronal death. The neurodegeneration seen in Alzheimer's disease brains is most likely a downstream effect, linked to processes such as immune response activation and free radical production. These results suggest that treatment at very early stages of Alzheimer's disease could prevent later irreversible neuronal degeneration. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据