4.6 Article

Ketamine Activates Cell Cycle Signaling and Apoptosis in the Neonatal Rat Brain

期刊

ANESTHESIOLOGY
卷 112, 期 5, 页码 1155-1163

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/ALN.0b013e3181d3e0c2

关键词

-

资金

  1. Children's Hospital Medical Center Anesthesia Foundation
  2. Children's Hospital Boston Endowed Chair in Neuroanesthesia, Boston, Massachusetts
  3. National Natural Science Foundation of China, Beijing, China [NSFC30772511]
  4. Chongqing Natural Science Foundation, Chongqing, China [CSTC2007BB5260]
  5. National Multiple Sclerosis Society, New York, New York

向作者/读者索取更多资源

Background: Prolonged exposure to ketamine results in accelerated neurodegeneration and neurocognitive deficits in the neonatal rats. Experimental models of neurodegeneration have implicated reentry of postmitotic neurons into the cell cycle, leading to cell death. The authors hypothesize that the ketamine-induced neuro-apoptosis is partially due to aberrant cycle cell reentry. To explore this hypothesis, the authors characterized the effect of ketamine on the cell cycle signaling pathway in the developing rodent brain in vivo and in vitro. Methods: Postnatal day 7 rat pups and primary neurons were used for the experiments. Each rat pup received five intraperitoneal doses of either saline or ketamine (5, 10, and 20 mg/kg/dose) at 90-min intervals over 6 h. Primary neurons were exposed to varying concentrations of ketamine to determine the dose and duration effects. The expression of cell cycle proteins (cyclin D1, cyclin-dependent kinase 4, and E2F1), Bcl2-interacting mediator of cell death (Bim), and activated caspase-3 was determined. The effect of cyclin D1 knock-down by small interfering RNA was also examined in primary neurons incubated in ketamine. Results: Ketamine mediated a dose- and time-dependent increase in expression of cell cycle proteins and activated caspase-3. Cyclin D1, cyclin-dependent kinase 4, E2F1, Bim, and cleaved caspase-3 expression increased at 12 h and peaked at 24 h in vitro. Knockdown of cyclin D1 by small interfering RNA attenuated Bim and cleaved caspase-3 expression. Conclusion: These findings support a model in which ketamine induces aberrant cell cycle reentry, leading to apoptotic cell death in the developing rat brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据