4.5 Article

Modeling of hydrogen-assisted ductile crack propagation in metals and alloys

期刊

INTERNATIONAL JOURNAL OF FRACTURE
卷 145, 期 2, 页码 135-157

出版社

SPRINGER
DOI: 10.1007/s10704-007-9112-3

关键词

hydrogen; void growth; ductile; fracture; plasticity

向作者/读者索取更多资源

This paper presents a finite element study of the hydrogen effect on ductile crack propagation in metals and alloys by linking effects at the microstructural level (i.e., void growth and coalescence) to effects at the macro-level (i.e., bulk material deformation around a macroscopic crack). The purpose is to devise a mechanics methodology to simulate the conditions under which hydrogen enhanced plasticity induces fracture that macroscopically appears to be brittle. The hydrogen effect on enhanced dislocation mobility is described by a phenomenological constitutive relation in which the local flow stress is taken as a decreasing function of the hydrogen concentration which is determined in equilibrium with local stress and plastic strain. Crack propagation is modeled by cohesive elements whose traction separation law is determined through void cell calculations that address the hydrogen effect on void growth and coalescence. Numerical results for the A533B pressure vessel steel indicate that hydrogen, by accelerating void growth and coalescence, promotes crack propagation by linking simultaneously a finite number of voids with the crack tip. This multiple-void fracture mechanism knocks down the initiation fracture toughness of the material and diminishes the tearing resistance to crack propagation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据