4.6 Article

Physiological death of hypertrophic chondrocytes

期刊

OSTEOARTHRITIS AND CARTILAGE
卷 15, 期 5, 页码 575-586

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2006.10.016

关键词

chondrocyte hypertrophy; physiological cell death; endochondral ossification; ultrastructure; transforming growth factor-beta; matrix metal loproteinase-13

向作者/读者索取更多资源

Objective: Post-proliferative chondrocytes in growth cartilage are present in two forms, light and dark cells. These cells undergo hypertrophy and die by a mechanism that is morphologically distinct from apoptosis, but has not been characterized. The aims of the current study were to document the ultrastructural appearance of dying hypertrophic chondrocytes, and to establish a culture system in which the mechanism of their death can be examined. Design: Growth cartilage from fetal and growing postnatal horses was examined by electron microscopy. Chondrocytes were isolated from epiphyseal cartilage from fetal horses and grown in pellet culture, then examined by light and electron microscopy, and quantitative polymerase chain reaction. Results: In tissue specimens, it was observed that dying dark chondrocytes underwent progressive extrusion of cytoplasm into the extracellular space, whereas light chondrocytes appeared to disintegrate within the cellular membrane. Pellets cultured in 0.1% fetal calf serum (FCS) contained dying light and dark chondrocytes similar to those seen in vivo. Transforming growth factor-beta 1 or 10% FCS increased the proportion of dark cells and induced cell death. Triiodothyronine increased the differentiation of dark and light cells and induced their death. Dark cells were associated with higher levels of matrix metalloproteinase-13 expression than light cells, and light cells were associated with higher levels of type II collagen expression. Conclusions: Light and dark hypertrophic chondrocytes each undergo a distinctive series of non-apoptotic morphological changes as they die. Pellet culture can be used as a model of the two forms of physiological death of hypertrophic chondrocytes. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据