4.7 Article

Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 21, 期 5, 页码 1088-1097

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2006.01.002

关键词

hybrid fiber; strain hardening; multiple cracking; toughness; fly ash

向作者/读者索取更多资源

Strain hardening and multiple cracking behavior of hybrid fiber reinforced cement composites containing different hybrid combinations of steel and polyethylene (PE) fibers under four-point bending are reported. The total volume fraction of fibers was kept constant at 2.5% to maintain a workable mix. Effects of increase in fly ash content as partial replacement of cement beyond 50%, such as 60% and 70% on the flexural response of hybrid steel-PVA (polyvinyl alcohol) and steel-PE fiber composites are also evaluated here. Among composites with different volume ratios of steel and PE fibers, the composite with 1.0% steel and 1.5% PE was found to show the highest flexural strength and that with 0.5% steel and 2.0% PE exhibited highest deflection and highest flexural toughness. Generally, the steel-PE hybrid composites exhibited lower flexural strength but higher deflection capacity than steel-PVA hybrid composites. The rate of strength loss after peak load in steel-PE hybrid composites was found low compared to steel-PVA hybrid system. The 50% replacement of cement by fly ash is found to be an optimum fly ash content in hybrid fiber composites. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据