4.7 Article

A framework and methods for incorporating gender-related issues in wildlife risk assessment: Gender-related differences in metal levels and other contaminants as a case study

期刊

ENVIRONMENTAL RESEARCH
卷 104, 期 1, 页码 153-162

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2006.08.001

关键词

gender; risk; metals; host factors; wildlife

资金

  1. PHS HHS [ESO 5022] Funding Source: Medline

向作者/读者索取更多资源

Gender plays a role in the genetics, physiology, morphology, and behavior of organisms, and thus influences the uptake, fate, and effects of contaminants in organisms. There are a number of chemical analysis tools, as well as biological approaches to understanding the influence of gender on contaminant levels and effects in wildlife. Biological approaches occur at all levels, from mutagenesis, gene expression and biochemistry, to physiology, morphology and development, to pathology and behavior. Information on the effects of gender at all these levels is essential for model building, risk assessment, and developing biomonitoring plans. Gender influences both internal and external fate and effects. However, bioaccumulation and effects cannot occur without exposure, which is mediated by behavior, bioavailability, bioaccessibility, and absorption. Gender influences a number of individual features (size, nutrition, genetics, hormones), that in turn affect niche differentiation, leading back to differences in exposure and susceptibility. Both sexes have a variety of methods of ridding the body of contaminants, through the bile, urine, exhaled air, and sloughing of epidermal structures (skin, hair, feathers). Females can also rid their body of contaminants through egg contents and egg shells, or mammals by transfer to the developing fetus and through breast milk. The availability of contaminant data in wildlife depends partly on the ease of identification of the sexes by either external or internal examination. Thus, there are more data on contaminant levels in birds and mammals than in fish. Surprisingly, metal levels are not uniformly low in females, even when they are morphologically smaller than males. For 43 studies of metals in vertebrates, females had higher levels in 30 cases where there were significant differences (and males were higher in only 14 cases). Females usually had higher levels of mercury than males. Review of the literature suggests that authors should clearly describe the gender differences in their abstracts (not just say they exist), and if they found no differences, state whether they had sufficient power to identify such differences. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据