4.4 Review

Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves

期刊

PHOTOSYNTHESIS RESEARCH
卷 92, 期 2, 页码 261-271

出版社

SPRINGER
DOI: 10.1007/s11120-007-9187-8

关键词

Andy Benson; chlorophyll fluorescence ratio F690/F735; chlorophyll fluorescence emission spectra; optical properties of leaves; re-absorption of the red chlorophyll fluorescence band

向作者/读者索取更多资源

Various approaches to understand and make use of the variable chlorophyll (Chl) fluorescence emission spectrum and fluorescence ratio are reviewed. The Chl fluorescence of leaves consists of two maxima in the red (near 685-690 nm), and far-red region (near 730-740 nm). The intensity and shape of the Chl fluorescence emission spectrum of leaves at room temperature are primarily dependent on the concentration of the fluorophore Chl a, and to a lower degree also on the leaf structure, the photosynthetic activity, and the leaf's optical properties. The latter determine the penetration of excitation light into the leaf as well as the emission of Chl fluorescence from different depths of the leaf. Due to the re-absorption mainly of the red Chl fluorescence band emitted inside the leaf, the ratio between the red and the far-red Chl fluorescence maxima (near 690 and 730-740 nm, respectively), e.g., as F690/F735, decreases with increasing Chl content in a curvilinear relationship and is a good inverse indicator of the Chl content of the leaf tissue, e.g., before and after stress events. The Chl fluorescence ratio of leaves can be applied for Chl determinations in basic photosynthesis research, agriculture, horticulture, and forestry. It can be used to assess changes of the photosynthetic apparatus, developmental processes of leaves, state of health, stress events, stress tolerance, and also to detect diseases or N-deficiency of plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据