4.3 Article

An EcoRI-RsrI chimeric restriction endonuclease retains parental sequence specificity

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbapap.2007.02.011

关键词

restriction endonuclease; sequence-specific DNA-recognition; protein refolding; molecular dynamics simulations

向作者/读者索取更多资源

To test their structural and functional similarity, hybrids were constructed between EcoRI and RsrI, two restriction endonucleases recognizing the same DNA sequence and sharing 50% amino acid sequence identity. One of the chimeric proteins (EERE), in which the EcoRI segment His147-Ala206 was replaced with the corresponding RsrI segment, showed EcoRI/RsrI-specific endonuclease activity. EERE purified from inclusion bodies was found to have similar to 100-fold weaker activity but higher specific DNA binding affinity, than EcoRI. Increased binding is consistent with results of molecular dynamics simulations, which indicate that the number of hydrogen bonds formed with the recognition sequence increased in the chimera as compared to EcoRI. The success of obtaining an EcoRI-RsrI hybrid endonuclease, which differs from EcoRI by 22 RsrI-specific amino acid substitutions and still preserves canonical cleavage specificity, is a sign of structural and functional similarity shared by the parental enzymes. This conclusion is also supported by computational studies, which indicate that construction of the EERE chimera did not induce substantial changes in the structure of EcoRI. Surprisingly, the chimeric endonuclease was more toxic to cells not protected by EcoRI methyltransferase, than the parental EcoRI mutant. Molecular modelling revealed structural alterations, which are likely to impede coupling between substrate recognition and cleavage and suggest a possible explanation for the toxic phenotype. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据